
Master Thesis
of

Tobias Knerr

Merging Elevation Raster Data and
OpenStreetMap Vectors for 3D Rendering

Supervisor:
Prof. Dr. Franz J. Brandenburg
Chair for Computer Science

Department of Informatics and Mathematics
University of Passau

May 2013





Abstract

The free OpenStreetMap database contains valuable data for 3D rendering, but eleva-
tion needs to be extracted from an external source such as NASA’s SRTM raster data.
Among several possible algorithms for approximating a terrain surface, natural neigh-
bor interpolation and especially piecewise approximation using least squares yield good
experimental results. A proposed framework of connectors and constraints may serve to
further refine the terrain surface by inserting information from OpenStreetMap’s vector
data. Linear programming can be applied to the problem of performing this refine-
ment. A prototype implementation based on the open-source 3D renderer OSM2World
produces examples for advantages and disadvantages of that approach.

3





Contents

1. Introduction 7
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2. Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1. Three-dimensional rendering of features . . . . . . . . . . . . . . . 8
1.2.2. Three-dimensional terrain rendering . . . . . . . . . . . . . . . . . 9
1.2.3. Integration of terrain and three-dimensional feature models . . . . 9

1.3. Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1. OpenStreetMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2. SRTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. Preparation of OpenStreetMap data 15
2.1. OpenStreetMap data model . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1. Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2. Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3. Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2. Relevant tags and relations . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3. Universal properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1. Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2. Transport networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3. Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4. Miscellaneous objects . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4. Generation of meshes for 3D world objects . . . . . . . . . . . . . . . . . . 26
2.4.1. Ground meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2. Coastlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3. Terrain approximation 29
3.1. Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2. Overview of approximation techniques . . . . . . . . . . . . . . . . . . . . 30
3.3. Approximation using least squares . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1. Least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3. Overall complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4. Natural neighbor interpolation . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1. Voronoi diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2. Natural neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.3. Construction of the Voronoi diagram . . . . . . . . . . . . . . . . . 38

5



Contents

3.4.4. Visibility walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.5. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4. Integration of terrain and models 47
4.1. Defining connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1. Connector examples . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2. Direct elevation assignment . . . . . . . . . . . . . . . . . . . . . . 50

4.2. Defining constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3. Enforcing constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1. Linear programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2. Modeling the problem . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5. Conclusion 59

A. Installing and using the prototype 61
A.1. System requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.2. Installation and program start . . . . . . . . . . . . . . . . . . . . . . . . 62
A.3. Loading OpenStreetMap data . . . . . . . . . . . . . . . . . . . . . . . . . 62
A.4. Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A.5. Configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.6. Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B. Bibliography 65

6



1. Introduction

1.1. Motivation

Virtual models of real-world landscapes have a wide range of potential applications,
including automotive navigation systems, tourism, the communication of planned con-
struction projects to the public, simulations and computer games. With sufficient com-
puting power available on a wide range of devices, customers of software incorporating
geographic data have come to expect a high quality of visual presentation. This calls for
a widely available, global data source for 3D landscape models.

OpenStreetMap may be an answer to this. Inspired by the Open Source movement
and wikis, most prominently Wikipedia, the volunteer project provides freely licensed,
crowdsourced geographic data to the public. It has a large international community of
more than one million registered users.1 And although it should be noted that only
38 % of registered users in 2011 had actually contributed edits to the project’s database,
with an even smaller number contributing on a regular basis – a thorough analysis
of this aspect of the community is available in [NZ12] – the growth continues at a
remarkable pace. As a result, the project’s basic road network now approaches a level
of completeness comparable with that of commercial datasets in some countries, as
confirmed for Germany by [NZZ11].

It seems like a worthwhile endeavor to explore the use of this vast dataset for 3D render-
ing. In addition to the numerous use cases in consumer-facing applications, attractive
3D visualizations would also be a source of motivation for the project’s contributors,
and may even be integrated into editing software.

1.2. Previous work

When advertising products, the term “3D” is used in a very broad sense, even for fully
two-dimensional maps which are rendered with a perspective projection. This style of
visualization has already been widely implemented in automotive navigation systems.

Actual three-dimensional modelling of terrain, man-made structures, or both, is a more
challenging task. Nevertheless, a large number of approaches and products exist.

1http://www.openstreetmap.org/stats/data_stats.html

7

http://www.openstreetmap.org/stats/data_stats.html


1. Introduction

Figure 1.1.: Building visualization by OSMBuildings

1.2.1. Three-dimensional rendering of features

Contemporary applications go beyond a small number of landmarks and may use 3D
building models, as well as models for other features, on a large scale. This is available
even in browser-based maps today, using JavaScript and technologies such as WebGL or
Canvas. A prominent example is Google Maps, which presents an abstract rendering of
buildings with outlines and faces shaded in gray. Similar visualizations have been created
from OpenStreetMap data by WikiMiniAtlas2 – an interactive map used by Wikipedia
– and the OSMBuildings library.3

The most comprehensive evaluation of OpenStreetMap tags related to 3D buildings so
far has been implemented by Kendzi3D, which is available as a plugin for the JOSM
offline editing software.4 The tool has also pioneered the use of 3D visualization in
providing direct feedback to OpenStreetMap contributors.

2http://meta.wikimedia.org/wiki/WikiMiniAtlas
3http://osmbuildings.org/
4http://wiki.openstreetmap.org/wiki/JOSM/Plugins/Kendzi3D

8

http://meta.wikimedia.org/wiki/WikiMiniAtlas
http://osmbuildings.org/
http://wiki.openstreetmap.org/wiki/JOSM/Plugins/Kendzi3D


1.2. Previous work

1.2.2. Three-dimensional terrain rendering

Three-dimensional terrain does not necessarily imply the rendering of three-dimensional
buildings and other features. Sometimes a two-dimensional map is simply textured on
top of heightfield terrain. Maperitive5 is an example for a widely used OpenStreetMap
rendering tool which offers this feature, though by no means the only one – many other
programs offer similar visualizations.

1.2.3. Integration of terrain and three-dimensional feature models

A range of popular three dimensional globe applications for various platforms is offered
by Google under the Google Earth brand.6 At the core of the underlying service is
satellite and aerial imagery textured onto a terrain height field. As pointed out by
[BN08], the terrain shape often does not match the features depicted in the imagery (see
e.g. figure 1.3). Furthermore, features interacting with the terrain (like tunnels) cannot
be represented by this approach alone.

To augment their virtual globe, Google are using 3D models of buildings and other
structures that are placed on top of the textured terrain. Originally, these were manually
created by users of the service in 3D modelling tools – such as the SketchUp modeller
then owned by Google –, but Google are now gradually adding meshes auto-generated
with photogrammetry. These provide a more detailed and realistic appearance and also
improve terrain surfaces, but occasionally suffer from visible deformities at a close range.
They also lack semantic information, which is often present in manually created vector
data and could serve different purposes: Some attributes, such as materials, can improve
the rendering itself by applying advanced effects like reflections or animations. Others
serve as a bridge between rendering and other applications, e.g. by linking the routing
network with exact locations of roads or even lanes in the 3D landscape, or connecting
points of interest with the correct doors of a building model.

To address the quality issues observed with textured terrain surfaces such as those tra-
ditionally used in GoogleEarth, [BN08] suggests an alternative approach for merging
terrain and features. By representing not only the appearance of features, but also their
effects on elevation as textures, they are able to make full use of the capabilities of
shader programs executed on graphics hardware. Like the alternative approaches, they
augment the visualization with mesh models for certain feature types.

3D rendering of terrain and OpenStreetMap data in particular has been previously stud-
ied by researchers at the Department of Geography at the University of Heidelberg.
[OSN+09] describes the integration of ground-level features such as roads into a Trian-
gulated Irregular Network (TIN), as an alternative to textured elevation models. This
enables a further improvement of terrain quality using known properties of linear fea-

5http://maperitive.net/
6http://earth.google.com

9

http://maperitive.net/
http://earth.google.com


1. Introduction

Figure 1.2.: 3D terrain in Maperitive, sample image taken from maperitive.net

Figure 1.3.: Discrepancies between terrain surface and textured features in Google Earth.

10

http://maperitive.net/


1.3. Data sources

tures, for example making sure that road surfaces are flat. To calculate the effect of such
properties on the TIN, [SLNZ09] proposes spring-based optimization – a technique in-
spired by simulating the mechanical properties of springs. Based on their technology, the
department is hosting OSM-3D7. This worldwide service features simple feature meshes
derived from OpenStreetMap data, and the visualization can be further improved with
building models uploaded through the OpenBuildingModels service.[UZ12]

1.3. Data sources

1.3.1. OpenStreetMap

OpenStreetMap serves as a major data source for the software developed as part of this
thesis – features such as roads, buildings or landcover information are based solely on
OpenStreetMap data. However, OpenStreetMap is less useful as a source for elevation
data. Not even 2.5 % of the nodes in the OpenStreetMap database carry an elevation
attribute in addition to the required latitude and longitude values.8 As shown by the
Taginfo service, an unusually large percentage of these nodes also carry tags indicating
that they have been created through imports, rather than manual contributions. In
addition, the correlation with name suggests that mostly named objects such as peaks
and points of interest have elevation information available. With these limitations, OSM
data alone is not sufficient to provide a terrain model for 3D rendering.

OpenStreetMap, however, also provides data regarding relative elevation of features. Ex-
amples of attributes in that category include layer (which is used on 70 % of bridges9

and tunnels10), incline, and others. This data is not as easily available elsewhere
and can serve to improve 3D models beyond basic terrain shapes. As popular Open-
StreetMap editing programs already contain the necessary tools to conveniently edit
these attributes, future widespread coverage is more likely than with absolute elevation.

The OpenStreetMap data model is explored in detail in chapter 2.

1.3.2. SRTM

A widely-used source of surface elevation data is the SRTM (Shuttle Radar Topography
Mission) dataset, based on radar measurements from a NASA Space Shuttle. It contains
data from 60◦ N to 56◦ S, at a resolution of 1 arc-second. Full resolution raw data has
only been published for the territory of the United States of America, but data with 3
arc-second resolution is available for most of Earth’s land surface.

7http://www.osm-3d.org/
8http://taginfo.openstreetmap.de/keys/ele
9http://taginfo.openstreetmap.de/keys/bridge

10http://taginfo.openstreetmap.de/keys/tunnel

11

http://www.osm-3d.org/
http://taginfo.openstreetmap.de/keys/ele
http://taginfo.openstreetmap.de/keys/bridge
http://taginfo.openstreetmap.de/keys/tunnel


1. Introduction

NASA themselves have published several versions of the dataset. Version 1 refers to the
original raw data, whereas version 2 has been improved by clipping data to coastlines
and fixing single pixel errors, with additional recalculations of the three-arc second data
in version 2.1.

Even the latest version published by NASA still contains significant voids. Several
interpolation methods have been employed to fill them, as described in [RNJ07]. Ad-
ditional postprocessed SRTM datasets have been made available by various providers,
including the CGIAR11. However, these often impose additional legal restrictions when
compared with the original Public Domain dataset and may not be compatible with
OpenStreetMap’s license according to the OpenStreetMap wiki12.

Due to the process used to obtain SRTM data, the elevation values may represent any
reflective surface rather than terrain elevation. Therefore, buildings and vegetation af-
fect the measured values. Although this thesis ignores the difference, it will likely be
necessary to take it into account for highest quality results in the future. Previous efforts
include OpenDEM13, which uses OpenStreetMap landcover data for SRTM postprocess-
ing.

SRTM data and OpenStreetMap have been used together elsewhere, and there has been
some work to make SRTM data available in the .osm data format used by many Open-
StreetMap tools and editor programs. So far, these efforts have focused on generating
contour lines as commonly used on two-dimensional maps (e.g. Contour lines in OSM
format14) or altitude differences along routes (e.g. srtm2wayinfo15). Neither fits the
purposes of this thesis, though, which instead directly uses the 2.1 SRTM data files as
published by NASA.

11http://srtm.csi.cgiar.org/
12http://wiki.openstreetmap.org/wiki/SRTM
13http://opendem.info/
14http://geoweb.hft-stuttgart.de/opendtm.html
15http://wiki.openstreetmap.org/wiki/Srtm2wayinfo

12

http://srtm.csi.cgiar.org/
http://wiki.openstreetmap.org/wiki/SRTM
http://opendem.info/
http://geoweb.hft-stuttgart.de/opendtm.html
http://wiki.openstreetmap.org/wiki/Srtm2wayinfo


1.3. Data sources

Figure 1.4.: Elevation values in tile N48E013 of SRTM version 2.1. Voids are shown in
red.

13





2. Preparation of OpenStreetMap data

If OpenStreetMap data is to be used as a data source for 3D rendering, significant
preprocessing of the originally two-dimensional dataset is necessary. As a first step, we
will create three-dimensional models from OpenStreetMap data. Chapter 3 is dedicated
to creating a terrain surface from SRTM data or similar sources. In chapter 4, we will
finally integrate the models from this chapter with the terrain.

2.1. OpenStreetMap data model

2.1.1. Primitives

As expected for a geographic database, all OpenStreetMap data is connected to locations
on the globe. The most basic geographic primitive is the node – a point on the globe
with latitude and longitude. Isolated nodes may be used to represent small features such
as trees or street lights, or even to temporarily represent larger features where the exact
extent has not been surveyed yet. Because nodes are the only primitive that directly
carries coordinates, all other primitives are built on top of nodes in some manner.

An ordered list of nodes defines a way. This primitive can represent any linear feature,
such as a stream or a railway. Ways inherently have a direction due to their definition
as ordered lists. The direction is relevant for some features, including e.g. oneway roads
and cliffs. Nodes may appear in a way multiple times. The most common case of this,
where the first and last node are identical, is often called a closed way in OpenStreetMap
documentation and applications.

Relations are the most complex primitive. They reference an ordered sequence of
members, which may be nodes, ways or other relations. An Unicode string, the role, is
associated with each member in a relation. Members and roles may appear in a relation
multiple times.

Figure 2.1.: Node, way, and relation. These icons from the OpenStreetMap wiki are
widely used in the project’s documentation.

15



2. Preparation of OpenStreetMap data

Figure 2.2.: 2D bitmap rendering from openstreetmap.org (left) and schematic data rep-
resentation. Several nodes and ways are visible, some of the ways are closed
and represent areas.

2.1.2. Tags

All the primitives described above can carry attributes, called tags. Each tag consists
of two Unicode strings with up to 255 characters each, the key and the value. The
key = value format, a common notation for tags, is used in this thesis.

Tags determine what type of feature is represented by a primitive, and can provide all
sorts of additional information about the feature. The OpenStreetMap API is unaware
of the meaning of keys, values and roles, thus leaving it to the project’s community to
define the semantics of the data model.

2.1.3. Areas

Areas are not actually a primitive of their own, even though the introduction of an area
primitive is being considered for the next revision of the OpenStreetMap API. Currently,
areas are still modeled using one of two approaches.

Most commonly, closed ways are used to model an area. Whether a given closed way
represents an area or a ring-shaped linear feature depends on its tags. The most straight-
forward distinction is achieved by explicitly tagging a way as area = yes or area = no,
but many other tags also implicitly turn a closed way into an area.

The second, more powerful approach for modelling areas is the multipolygon relation.
Such a relation may have multiple ways as its members which can be assembled into
closed rings. Ways with the outer role form the outline of the polygon(s), ways with
the inner role form holes. In the standard case, tags for the area are added to the

16



2.2. Relevant tags and relations

#39

#51

#42

#97

relation #18

members tags

memberrole valuekey

way #39outer multipolygontype
way #51inner forestlanduse
way #97outer
way #42outer

Figure 2.3.: An example for a forest area modeled as a multipolygon relation with two
outer rings and one hole. Note that neither way directions nor the order of
members affect the area’s appearance.

relation in addition to a type = multipolygon tag, while the ways may represent features
themselves.

Multipolygons need to be preprocessed. For the purpose of the implementation of this
thesis, they are treated as multiple independent polygons with identical tags, each pos-
sibly containing a number of holes. The implemented algorithm is based on the one
outlined in the OpenStreetMap wiki at Relation:multipolygon/Algorithm.1

2.2. Relevant tags and relations

The lack of API limitations on tags is the foundation for the community’s creativity, but
makes it necessary to decide on a subset of the huge number of possible tags that may
be useful for a given task.

Commonly used tags are documented in the OpenStreetMap wiki,2 which can be edited
by any user, just like the OpenStreetMap database itself. Statistical tools such as
Taginfo3 show the popularity and regional distribution of a tag.

This section provides an overview of tags and relations that are relevant for 3D rendering.

1http://wiki.openstreetmap.org/wiki/Relation:multipolygon/Algorithm
2http://wiki.openstreetmap.org
3http://taginfo.openstreetmap.org

17

http://wiki.openstreetmap.org/wiki/Relation:multipolygon/Algorithm
http://wiki.openstreetmap.org
http://taginfo.openstreetmap.org


2. Preparation of OpenStreetMap data

2.3. Universal properties

ele Absolute elevation. As explained in 1.3.1, this key is not
common enough to replace SRTM. The project’s wiki de-
fines that values should use the WGS84 standard, but man-
ually added values do not always follow this definition.

incline Incline of a way, given either as a percentage (negative
values indicate an incline opposite to the way direction) or
just roughly as up/down. If the incline varies along a way,
the maximum incline is used, so the average incline may
be lower.

layer Relative vertical ordering as an integer between −5 and 5,
defaulting to 0. If two features overlap, then the feature
with the higher layer is above the other.

direction The direction a feature is facing. This allows nodes and
areas, which do not have an inherent direction as ways
do, to represent directed features. Values can be given as
clockwise angles in degrees relative to north, or as a rough
cardinal direction such as NW.

Measurements

Values refering to distances are assumed to be in meters by default, but other units can
be used explicitly as part of the value.

height Height of a feature.

length Length of a feature.

width Width of a feature. Commonly, but not exclusively, used
on ways.

Materials and surfaces

To choose the texture of a feature in 3D rendering, the following tags are often helpful:

material Material a feature is made of.

surface Surface material of a feature. Commonly, but not exclu-
sively, used on roads.

18



2.3. Universal properties

2.3.1. Buildings

Buildings are a prominent feature in many 3D visualizations. Since the availability of
high quality aerial imagery for tracing, building coverage in OpenStreetMap has in-
creased a lot, although the level of detail varies greatly between different regions. The
tags described here are documented on various wiki pages.4,5,6

Basic tags

building Required key to mark a feature as a building, usually ap-
plied to areas. The value may simply be set to yes, but can
alternatively be used to define a building type. Such val-
ues, e.g. garages or hut, can be represented by applying
different textures to alter the appearance of the building.

building:part Can be used on additional areas inside the building. It
models a section of the building that has different tags
than the building as a whole, such as a different height,
color, or its own name.

Building relation

It is possible to group all parts and other elements of a building by adding them to a
relation with the type = building tag. In situations where buildings overlap vertically,
this is necessary to avoid ambiguity, and “Simple 3D Buildings” recommends it for all
buildings with building parts.

However, this is currently used only for a minority of buildings. To evaluate the others,
it is still necessary to check whether a building part is geometrically contained within a
building’s outline polygon.

4http://wiki.openstreetmap.org/wiki/Key:building
5http://wiki.openstreetmap.org/wiki/Simple_3D_Buildings
6http://wiki.openstreetmap.org/wiki/User:Aschilli/ProposedRoofLines

19

http://wiki.openstreetmap.org/wiki/Key:building
http://wiki.openstreetmap.org/wiki/Simple_3D_Buildings
http://wiki.openstreetmap.org/wiki/User:Aschilli/ProposedRoofLines


2. Preparation of OpenStreetMap data

Roof shape

roof:shape Defines the shape of the building for simple roofs.
building:roof:shape is a common synonym.

roof:orientation =

along

A building where the roof ridge is parallel to the longest
wall, the default case.

roof:orientation =

across

A building where the roof ridge is orthogonal to the longest
wall.

roof:angle Angle of the main roof face in degrees.

For more complex roofs, it can be necessary to explicitly draw the roof’s geometry:

roof:ridge = yes An additional way within the building outline defining a
ridge of the building’s roof.

roof:edge = yes An additional way within the building outline defining an
edge of the building’s roof.

roof:apex = yes An additional node within the building outline describing
a peak point of the building’s roof.

Figure 2.4.: A hipped roof modeled using roof:ridge (dashed) and roof:edge (dotted)
ways, serving as a simple example for explicit roof geometry. The result
should be similar to roof:shape = hipped, but more complex shapes may
have no corresponding roof:shape value.

20



2.3. Universal properties

Heights and levels

height The height of the building or building part, not counting
underground levels. Usually in meters, but a different unit
can be given in the value.

min height For building parts above the ground, this indicates the
distance from the ground.

building:levels The number of levels between the ground and the roof. For
texturing, this allows to display an appropriate number of
rows of windows. When there is no exact height available,
this can also be used to calculate a height estimate.

building:min levels Like min height, this applies to building parts above the
ground.

roof:height The height of the roof itself, not counting the height of the
levels below.

roof:levels The number of levels in the roof itself, not counting the
height of the levels below.

levels Used on an individual component of the building, such as
the entrance nodes, this defines which building level it is
on. The lowest ground level is usually treated as level 0.

Materials

building:material The outer material of the building facade, including values
such as plaster, brick or glass. This can usually be
translated directly to a texture for the building’s walls.

building:colour The color of the building facade. In addition to words like
red, it is also possible to use an arbitrary RGB value in
hexadecimal notation (e.g. #FF30A4). The texture for the
building’s walls can be modified based on this key’s value.

roof:material Like building:material, but for the roof.

roof:colour Like building:colour, but for the roof.

21



2. Preparation of OpenStreetMap data

Entrances

building = entrance Marks a node as a building entrance. May be omitted if
an entrance key is present.

entrance Marks a node as a building entrance. The key’s values can
be used to distinguish between entrance categories, such
as main entrances or emergency exits.

Tags not relevant for 3D rendering

There are many other tags commonly found on buildings, such as house numbers
(addr:housenumber). However, these have no or only marginal use for 3D rendering.

Likewise, we do not use shops and other points of interest commonly found in or at
buildings for rendering, although certain practical applications of 3D landscapes would
still display icons or other markers for these in addition to the scenery itself.

Possible future developments

The OpenStreetMap community is continually experimenting with new tags for a more
detailed description of buildings. For example, the OSM-4D7 draft suggests further ex-
tensions of the tag catalog, allowing for more flexible roof shapes, dormers, and attributes
for other feature categories. These concepts are not frequently used in the database yet,
but may easily become an essential ingredient of 3D building rendering if they are more
widely adopted by the community.

7http://wiki.openstreetmap.org/wiki/OSM-4D/Roof_table

22

http://wiki.openstreetmap.org/wiki/OSM-4D/Roof_table


2.3. Universal properties

2.3.2. Transport networks

Many features – most importantly roads and railways – are represented as networks of
ways in OpenStreetMap. A common property of this feature category is the convention
to that shared nodes between ways are used to model same-level junctions. A challenge
for 3D rendering is to turn the nodes and ways into polygons.

Basic tags

highway Required key to mark a way as a road, track or path, usu-
ally applied to areas. The available values can be used to
choose default values for surface texture and width to visu-
ally represent the large difference between e.g. motorway

and footway. Not all tags using the highway key represent
roads, however – the key also includes related features such
as street lights and motorway rest areas, so care should be
taken to treat these correctly.

highway = steps One possible value for the highway key, steps require spe-
cial handling in rendering.

railway Required key to mark a way as a railway, usually applied
to areas. As with highway, various values exist, and some
are intended for railway infrastructure rather than actual
rails.

Bridges and tunnels

bridge = yes Indicates that a way runs across a bridge. Values other
than no may indicate particular bridge variants.

tunnel = yes Indicates that a way runs through a tunnel. Values other
than no may indicate particular tunnel variants. In par-
ticular, tunnel = building passage represents a way run-
ning though a building instead of through the ground,
which is to be taken into account for building rendering.

Ways on top of bridges or in tunnels do not share nodes with ways below/above. This
allows distinguishing them from same-level junctions.

23



2. Preparation of OpenStreetMap data

Area and node features

A closed way that carries both the highway key and area = yes is commonly used for
town squares or plazas. More generally it represents a component of the road network
where traffic (often, but not necessarily pedestrian) moves freely and is not confined to
lanes or directions of travel.

Nodes of highway ways are usually untagged, but in some cases they may carry tags
and represent a distinct feature themselves:

highway = crossing Road crossing for pedestrians.

railway = crossing Railway crossing for pedestrians.

railway =

level crossing

Level crossing between road and railway.

barrier A barrier blocking traffic. Values distinguish between
types such as bollards or gates.

traffic calming An obstruction to slow down traffic. Values distinguish
between types such as islands or speed bumps.

Lanes

lanes Number of full-width lanes for motorized traffic. Useful
for a better estimate of the road’s width, and for drawing
lane divider lines.

sidewalk =

left/right/both

Indicates the presence of one or two sidewalks along the
road.

cycleway = lane A cycle lane is present. It is possible to define the location
as e.g. cycleway:left = lane.

cycleway = track A cycleway is separated from the road’s carriageway.

Tags not relevant for 3D rendering

For many use cases of OpenStreetMap data, street names (name) and numbers (ref), as
well as various traffic rules, access limitations and turn restrictions are crucial. We can
easily ignore them for 3D rendering, though. One exception from this is the legal height
limit for vehicles using the road, maxheight, which can be used to estimate a minimum
amount of free space above a way.

24



2.3. Universal properties

Possible future developments

Some tags which would be very valuable for 3D rendering are either not common enough
yet or still controversially discussed in the OpenStreetMap community.

The bridge key does not allow to distinguish between two bridges next to each other
and a single bridge carrying multiple ways. Therefore, it has been suggested to create
relations with a type = bridge tag, containing all ways that are running over the same
bridge as well as the outline of the bridge itself. The counterpart for tunnels would be
type = tunnel. Alternatively, the bridge outline may be drawn as an area and tagged
as man made = bridge. When one of these approaches is established, it should be taken
into account for high-quality rendering of bridge and tunnel structures.

For adding properties to individual lanes, Lanes8 tagging is slowly becoming more
widespread. This relatively new concept is based on value lists. For example, lane
surfaces may be defined as surface:lanes = asphalt|asphalt|cobblestone.

Furthermore, possible future trends include individually mapped traffic signs using nodes
with the traffic sign key, and mapping the exact extent of even an irregularly shaped
road as an area with area:highway key in addition to the highway way. That infor-
mation could likewise be incorporated into 3D rendering. It remains to be seen if the
OpenStreetMap community adopts these ideas.

2.3.3. Water

Many of the the conventions for roads and railways – such as bridges, tunnels, and sharing
nodes to indicate connections – apply to the water network as well. One important
difference, however, is the convention that the way’s direction is chosen to match flow
direction. As flow direction is related to incline, this is an interesting property for 3D
scenes. Some other concepts are also unique to waterways:

waterway Required key to mark a way as a waterway. Values distin-
guish between types.

waterway = riverbank An area covering the full extent of a waterway. This is
drawn in addition to a way, which should be filtered from
rendering if a riverbank area is also present.

natural = water Required tag to mark an area as a body of water. Not
used for oceans.

natural = coastline Separation between land and sea. Water is on the right
side of these ways.

8http://wiki.openstreetmap.org/wiki/Lanes

25

http://wiki.openstreetmap.org/wiki/Lanes


2. Preparation of OpenStreetMap data

2.3.4. Miscellaneous objects

An almost innumerable variety of other features exist in the OpenStreetMap database.
Most of them can be processed in a very similar manner: By applying a texture to an
area or placing a simple model at the position of a node. Therefore, this list only includes
those tags which are particularly prominent, common or have unusual properties for 3D
rendering.

natural = tree A node for a single tree.

landuse = forest

natural = wood

Forest areas, managed or natural. Randomly distributed
trees produce a decent visualization, although much more
complicated forest rendering techniques do exist.

barrier =

wall/fence/hedge

The most common linear barriers. These are used on ways
rather than nodes.

natural = cliff

barrier =

retaining wall

A way representing a cliff or wall with terrain elevation dif-
ference, which is often not reflected in the coarse elevation
raster data. The top is on the left of the way.

2.4. Generation of meshes for 3D world objects

Distinct real-world features which rise above the ground are usually represented with
meshes composed of primitives (such as triangles, and possibly more complex faces)
which graphics hardware can render efficiently. For the conversion of buildings and
other features to graphics primitives and rendering, existing code from OSM2World9 –
an open source community project started by the author of this thesis – can be used, as it
already supports many of the tags listed in 2.2. However, for the purpose of integration
into the terrain surface (see chapter 4), it was necessary to modify the data structures
representing these features.

2.4.1. Ground meshes

OpenStreetMap contains polygons with attributes describing the ground surface texture.
These are also converted to primitives for rendering. Where parts of the polygons are
overlapped by linear features and dominant area features on the ground (such as roads
and water bodies), it is necessary to subtract the area covered by these features first.
The remaining surface is then triangulated.

9http://osm2world.org

26

http://osm2world.org


2.4. Generation of meshes for 3D world objects

Figure 2.5.: Building mesh in OSM2World. Top to bottom: raw OpenStreetMap ways,
wireframe mesh, textured model

27



2. Preparation of OpenStreetMap data

For subtraction, we use the JTS Topology Suite10 library. This library also implements
triangulation. It turned out less suitable for our triangulation requirements, however,
because it produces Conforming Delaunay Triangulations and has to insert additional
points into polygon outlines to achieve this goal. As the approach used for finalizing the
3D scene in chapter 4 only works well with points known in advance, these additional
points would not be properly connected to neighboring features. Therefore, poly2tri11

was chosen for ground surface triangulation instead.

To avoid unnecessary special case handling, empty terrain – i.e. terrain with no explicitly
mapped landcover – is treated the same as other ground areas. This is achieved by
covering the entire data boundary with a grid of rectangular patches of ground, and
subtracting other features, including other ground areas, from those initial polygons as
described above.

The default terrain texture is an externally defined constant in this thesis, but may offer
room for future improvement. It could, for example, vary depending on the geography
and climate of the region in question. For this purpose, it may even be an option to pick
the default terrain texture for a region based on low-resolution aerial imagery.

2.4.2. Coastlines

As hinted at above, seas are not mapped as areas in OpenStreetMap. Instead, the
coastline is made up of a large number of ways with a natural = coastline tag. The
ways share end nodes, but are otherwise independent. Evaluating coastlines is only
reliably possible because of the convention that the water is always on the right side of
the way.

Preferably, we want to represent parts of the sea as water areas, again to avoid special
cases. This requires preprocessing of the ways into closed rings, which is similar to
multipolygon preprocessing. As any OpenStreetMap data extract covering less than
the entire planet will tend to contain incomplete coastline rings, however, we needed to
develop a somewhat different algorithm for this task.

10http://tsusiatsoftware.net/jts/main.html
11http://code.google.com/p/poly2tri/

28

http://tsusiatsoftware.net/jts/main.html
http://code.google.com/p/poly2tri/


3. Terrain approximation

A next step towards the creation of a 3D scene is the approximation of terrain elevations
from a sparse set of measurements, such as those provided by SRTM data (see 1.3.2).
This can be performed independently from the preprocessing of OpenStreetMap data
described in chapter 2.

3.1. Basic definitions

Our goal is the approximation of terrain elevation in three-dimensional space R3. The
x and z values of a point (x, y, z) ∈ R3 shall represent the point’s location on a plane
(the result of transforming its latitude and longitude using a suitable map projection).
y shall represent the point’s elevation.

We make several assumptions about the terrain:

• The x and z values are bounded by a rectangle, i.e. there exist intervals X,Z ⊂ R
such that (x, z) ∈ X × Z holds for all points (x, y, z) of the terrain.

• For each (x, z), the terrain has exactly one elevation value, so the terrain can be
modelled as a function X × Z → R.

While the first assumption is easily met in practical applications by working with data
for a bounded region, the second means that some shapes found in real-world terrains
cannot be directly represented. However, reconstructing such shapes from SRTM data is
not feasible and the assumption greatly simplifies creating and working with the terrain.

As mentioned before, we use elevation values from SRTM data as the input for our
algorithms. Although these values are arranged in a grid, the algorithms presented here
should not rely on this structure for correctness. This will allow taking into account
additional sources of elevation, including elevations crowdsourced by the OpenStreetMap
project, in the future.

Not relying on a grid also lessens the impact of small SRTM voids. Larger voids are most
commonly found in areas with low density of human construction, particularly deserts
and mountaineous regions, and sophisticated void filling is not the focus of this thesis.

Thus, we can simply define our input as a number of sites with known elevation – a
finite set of points in X × R× Z.

29



3. Terrain approximation

3.2. Overview of approximation techniques

Although we could only experiment with a limited number of solutions, many possible
approaches exist. Therefore, we will start with a short overview of some available algo-
rithms. Afterwards, we will look in detail at (and implement) two different solutions:
least squares approximation and natural neighbor interpolation.

Linear interpolation within a triangulation

A common and straightforward approach, described e.g. in [dB00], starts with a tri-
angulation of the set of points with known elevation. Any triangulation algorithm for
point sets can be used, but the Delaunay Triangulation (which we describe in a different
context in section 3.4.1) often produces good results. Within each triangle, terrain ele-
vation is linearly interpolated based only on the known elevation values of the triangle’s
vertices. Thus, this algorithm amounts to a piecewise linear interpolation.

This simple solution appears attractive at first, considering that rendering requires tri-
angulation of the ground in some manner anyway. However, when we recall the low
resolution of SRTM data, it is clear that the resulting terrain would appear too coarse
for any close-up visualization (see figure 3.3). For that reason, we prefer a detailled
triangulation with a lot more vertices than there are SRTM data points, like the one
previously described in section 2.4.1.

It deserves to be pointed out, however, that we ultimately render our terrain using
triangle primitives. As these triangles are perfectly flat, this algorithm will implicitly
come into play at a rendering stage – just with a much finer triangle network.

Figure 3.1.: Two-dimensional cross section through a terrain created with linear in-
terpolation. Dots mark points with known elevation, the input for the
approximation.

30



3.2. Overview of approximation techniques

Figure 3.2.: Two-dimensional cross section through a terrain created with inverse dis-
tance weighting. Dots mark points with known elevation, the input for the
approximation.

Inverse distance weighting

Inverse distance weighting (IDW) is a very common approach in Geographical Informa-
tion Systems, often presented in introductory material such as [Lon05]. It is based on
the idea that elevation values of points close to each other tend to be similar. There-
fore, terrain elevation is approximated as a weighted average of known elevations. The
weights are based on the inverse distance to the point whose elevation is approximated,
most frequently the inverse squares of distances are used.

Usually, not all points with a known elevation will be taken into account, but only those
within a neighborhood defined, for example, by a cutoff radius or a maximum number
of points.

When used to approximate terrain, IDW often produces very visible minima and maxima
at the points with known elevation, appearing as peaks and pits (see figures 3.2 and 3.4).
This effect is undesirable in rendering. We will, however, use a similar calculation in
section 3.3.2 as a component of another algorithm’s implementation. Like IDW, we will
use inverse squares of distances as weights for a weighted average within a neighborhood,
but instead of averaging the known elevation values themselves, we will average function
values from multiple local approximations.

31



3. Terrain approximation

Figure 3.3.: Terrain approximation using flat triangles from a relatively close viewing
distance. Compare with figure 3.12

Figure 3.4.: Terrain approximation using IDW. Visible extrema appear at the points
with known elevation. Compare with figure 3.10.

32



3.3. Approximation using least squares

3.3. Approximation using least squares

3.3.1. Least squares

Least squares approximation is a popular method for finding a curve approximating a
set of data points. As least squares approximation is a generic technique applicable to
different classes of functions, we need to first choose a class of functions used for the
approximation. This thesis uses quadratic polynomials

f((x, z)) = a0 + a1 · x + a2 · z + a3 · x2 + a4 · xz + a5 · z2

of two variables x and z, representing the coordinates of a point in the plane per the con-
ventions described above. These polynomials are easily evaluated and can be intuitively
expected to describe small terrain patches sufficiently well.

Given k + 1 > 6 sites of known elevation, pi = (xi, yi, zi) with i = 0, 1, . . . k, we can find
values for a0 through a5 which produce small distances ‖yi − f((xi, zi))‖ between the
polynomial and the known elevation values. To do so, we need to solve the following
overdetermined linear system:

a0 + a1 · x0 + a2 · z0 + a3 · x20 + a4 · x0z0 + a5 · z20 = y0
...

...
...

a0 + a1 · xk + a2 · zk + a3 · x2k + a4 · xkzk + a5 · z2k = yk

Equivalently, this can be written as a matrix equation:


1 x0 z0 x20 x0z0 z20

...
...

1 xk zk x2k xkzk z2k

 ·

a0
...

a5

 =


y0
...

yk


The (a0, . . . , a5) obtained as the solution are optimal, in the sense that the sum of
squared distances

k∑
i=0

‖yi − f((xi, zi))‖2

is minimal (hence “least squares”). This is explained, along with a short description of
the technique, in [Far02].

33



3. Terrain approximation

Figure 3.5.: Two-dimensional cross section through a terrain (gray) created with least
squares approximation. Dots mark sites with known elevation, the input for
the approximation. Additionally, the approximated polynomials at two of
sites are shown.

With our prototype, the matrix equations are delegated to the open source Apache
Commons Math library1 which implements a QR decomposition solver.

3.3.2. Implementation

Describing the terrain of a large region with a simple equation is not realistically possible.
Therefore, we only use least squares to determine local approximations for small terrain
patches. More precisely, we approximate a curve at each site of known elevation, based
on the elevation value and position of that site itself and the k nearest sites. The
implementation uses k = 8, which usually (in the absence of voids or other anomalies)
means that the approximation uses the site itself and its direct neighbors. “Nearest”
sites are calculated using only x and z dimensions.

To determine the elevation of the approximated terrain at any two-dimensional point
p, the set S(p,l) of the nearest l sites (for some predefined value l) is determined. The
values fs(p) of the functions associated with each s ∈ S(p,l) are calculated and combined
using a weighted average, with the inverse distance to the point as the weight:

ele(p) =

∑
s∈S(p,l)

w(s,p) · fs(p)∑
s∈S(p,l)

w(s,p)

where the weight w(s,p) is defined as with inverse distance weighting (section 3.2), using
a sensible cutoff distance. The function ele finally represents our terrain.

Finding sites close to a given point reasonably quickly is a necessary component for
this solution. With our implementation, all sites are inserted into a regular grid of

1http://commons.apache.org/proper/commons-math/

34

http://commons.apache.org/proper/commons-math/


3.4. Natural neighbor interpolation

rectangular cells. To find the sites closest to a point, sites are retrieved from the cell
containing the point, and candidates for the result are managed in a priority queue
ordered by proximity. This priority queue contains the best candidates identified so far
(up to the number of sites we want in the result). The search is extended to cells at an
increasingly larger distance around the one containing the point until we have enough
results and even the candidate with the largest distance in the priority queue is closer
to the given point than any point from the still unchecked cells could possibly be.

3.3.3. Overall complexity

Solving the matrix equation for one site and approximating the polynomial are both
possible in constant time, thus the time complexity of doing so for n points with either
known or unknown elevation is O(n), i.e. this part of the algorithm alone would scale
linearly.

However, the algorithm’s complexity is dominated by the necessary determination of the
k nearest sites for each site and point. As we allow arbitrarily distributed sites as our
input, this task is equivalent to a generalization of the all-nearest-neighbors problem,
which is solved by algorithms such as one described by [Vai89] running in O(k ·n · log n)
time – which is also the lower bound.

Our implementation described above has a higher worst case time complexity than that,
though. If most or even all sites end up in the same cell of our rectangular grid, we end
up calculating pairwise distances of all n coordinate pairs. This results in a complexity
of O(n2). (Inserting into and deleting from the priority queue can be neglected for this
consideration because it has a fixed maximum length.) However, we expect that sites
tend to be more evenly distributed in practice.

3.4. Natural neighbor interpolation

Natural neighbor interpolation is an interpolation technique where the elevation of a
point on the terrain surface is determined by the elevation of nearby sites, the “natural
neighbors” of the point. It was described in 1981 by [Sib81]. The implementation used
in this thesis is based on the approach suggested by [LG04].

At a site, the terrain’s elevation will always be equal to the site’s known elevation
value. This property is desirable especially if crowdsourced elevation data is created by
contributors who may expect their input to have a direct effect.

35



3. Terrain approximation

3.4.1. Voronoi diagram

Voronoi diagrams are the foundation for the definition of natural neighbors. Such a
diagram can be constructed for any set of sites S from the infinite set of all points P in
the plane. For each s ∈ S, its Voronoi cell Cs,S is defined as the set of all points that
are at least as close to s as to any other point, i.e. Cs,S = {p ∈ P | ∀q ∈ P : dist(s, p) ≤
dist(s, q)}. The common boundary of two Voronoi cells (if it contains more than one
point) is called a Voronoi edge, and the endpoints of Voronoi edges are called Voronoi
vertices. Voronoi edges and vertices together form the Voronoi diagram.

While other variants and higher-dimensional Voronoi diagrams have been studied, only
two-dimensional diagrams based on Euclidean distance are used in this thesis.

Basic properties

Voronoi cells must be convex as an intersection of half-spaces. However, the outermost
Voronoi cells have an infinite area. Often it is more convenient to introduce a bounding
curve at some distance around all sites and vertices of the Voronoi diagram. Adding
that bound and removing the (infinite) parts of the Voronoi edges outside the bound
results in a planar and connected embedded graph, the finite Voronoi diagram.

According to the Euler formula, the relationship between the numbers of vertices (v),
edges (e) and faces (f) in a planar connected graph is given by

v − e + f = 2

This equation applies to finite Voronoi diagrams. As there is a Voronoi cell for each site
in S, the number of faces is equal to the cardinality of S plus the single face outside the
bound, i.e. f = card(S) + 1. Therefore, we know that

e = v + card(S)− 1

Furthermore, each vertex in a Voronoi diagram is connected to at least three edges, so
we know that e ≥ 3v/2, or v ≤ 2e/3. Substituting v in the previous equation, we arrive
at

e ≤ 2e/3 + card(S)− 1

which can be transformed to

e ≤ 3 card(S)− 3

36



3.4. Natural neighbor interpolation

Figure 3.6.: Section of a Voronoi diagram with Delaunay triangulation.

Each of these edges separates two faces. Thus, the average number of edges around each
face is 2 · (3 card(S) − 3) / (card(S) + 1) < 6 – there are, on average, less than 6 edges
in a Voronoi cell’s boundary. This well-known argument, described e.g. in [AK00], will
be useful for discussing algorithmic complexity later.

Delaunay triangulation

From each Voronoi diagram, it is possible to build one Delaunay triangulation (and
vice versa) – a partitioning of the space into triangles where each triangle’s circumcircle
contains no sites except the triangle’s three vertices. This will make it possible for us
to calculate a Delaunay triangulation first, and use it to fully or partially derive the
Voronoi cells as needed (section 3.4.3). To extract the diagram from the triangulation,
a vertex of a Voronoi cell is placed at the centre of each triangle’s circumcircle, and a
Voronoi cell edge is created for each Delaunay triangle edge.

3.4.2. Natural neighbors

Inserting an additional site into an existing Voronoi diagram will decrease the area of
nearby sites’ Voronoi cells. This observation leads to the concept of natural neighbors:
The natural neighbors of a point p ∈ P \S are those sites in S whose cells would become

37



3. Terrain approximation

Figure 3.7.: Left to right: Voronoi cells, relative weights of a point’s natural neighbors,
Voronoi cells after insertion of that point.

smaller by the insertion of p into the Voronoi diagram of the sites S.

Furthermore, this concept allows a relative weighting of a point’s neighbors. To achieve
this, calculate the area loss of a site s ∈ S:

losss = area(Cs,S)− area(Cs,S∪{p})

The relative strength of the neighborship of s to p is then determined as its share of the
sum of area lost by all existing sites in the diagram, i.e. the quotient

losss/
∑
t∈S

losst

.

The sum of these weights will be 1. Thus, an interpolation between values – such as
elevation – associated with the sites can be achieved by assigning to each point a weighted
average of its neighbors’ values.

3.4.3. Construction of the Voronoi diagram

Natural neighbor interpolation as defined above requires the sites’ Voronoi diagram, so
we need to look into the construction of Voronoi diagrams. Luckily, this problem has
been extensively studied in computational geometry. We will briefly summarize some
relevant knowledge and algorithms, primarily based on a detailled overview available in
[AK00] and the algorithms suggested by [LG04].

Lower bound for complexity

A lower bound of Ω(n log n) time for constructing the Voronoi diagram or Delaunay
triangulation of a set of n points can be proven via reduction: If n real numbers

38



3.4. Natural neighbor interpolation

flip13

flip31

flip22

Figure 3.8.: The flips used in a two-dimensional Delaunay triangulation.

r1, . . . , rn ∈ R are given, sorting them is known to be to require Θ(n log n) time. These
numbers can be used to create a set of n points S =

{
(ri, r

2
i )|i ∈ [1, n]

}
in the plane.

Creating S takes no more than linear time. By constructing the Voronoi diagram of S,
we are able to obtain the set’s convex hull. Walking around the convex hull of S, we
will encounter all points from S sorted by their first coordinate value, ri, giving us the
correct ordering of the numbers r1, . . . , rn. Thus, creating a Voronoi diagram of n points
must be at least as complex as sorting n real numbers.

Incremental construction of the Delaunay triangulation

As mentioned before, we first construct the Delaunay triangulation instead of directly
calculating Voronoi diagrams. One of many possibilities to construct a Delaunay trian-
gulation is incremental insertion. The main benefit choosing this approach is the ability
to use the same algorithm for both the initial insertion of the sites with known eleva-
tion and the subsequent temporary insertion of probe points which will be necessary to
determine natural neighbors.

We perform incremental insertion using so-called flips, i.e. local modifications to the
Delaunay triangulation as shown in figure 3.8. To insert a point into the Delaunay
triangulation, we first find the triangle containing it. The triangle is then split into
three separate triangles at the new point, an operation called a flip13. This modification
of the triangulation can violate the property that no circumcircle in a Delaunay triangle
may contain more than three points. We restore it by performing flip22 operations on
affected neighbors of previously modified triangles, wherein a quadrilateral composed of
two triangles is switched to the unique alternative triangulation.

39



3. Terrain approximation

Figure 3.9.: Visibility walk in a Delaunay triangulation towards the triangle containing
a point P, along with another valid visibility walk. The last successful half-
space test is illustrated with a shaded background.

Both flip13 and flip22 can be inverted, which is a requirement for using flips in the
temporary insertion of probe points.

Even in the worst case, we can state that incremental insertion will build the Delaunay
triangulation for a set of n points in O(n2) time: During the insertion of each of the n
points, we first have to find the triangle containing it, and O(n) time is sufficient for
simply testing all triangles. Afterwards, we have to flip pre-existing triangles affected
by the insertion, of which there cannot be more than n.

It is not actually necessary to flip all triangles, though. The triangles that participate
in flips are connected to the newly inserted point, and their number is limited by the
degree of that point in the new triangulation. Thus, we apply the knowledge that the
number of edges of the corresponding Voronoi cell, and therefore the point’s degree, is
on average no higher than 6 (see section 3.4.1). Depending on the order in which the
points are inserted, it may still be higher – but with a randomized insertion order, we
can expect O(1) time for a single insertion.

Additionally, the search for the triangles affected by the insertion could be improved
to O(log n) expected time, which would yield O(n log n) expected time for incremental
insertion. However, our implementation does not use such an approach, but rather a
technique known as visibility walks.

40



3.4. Natural neighbor interpolation

3.4.4. Visibility walks

For fast incremental insertion into a Delaunay triangulation, it is crucial to quickly find
the existing triangle containing the point to be inserted. As with the least squares
approach, we first used a speedup grid for this purpose. However, this does not work
well because triangles span a very large number of grid cells, especially at the beginning
of the construction of the triangulation. The resulting excessive number of updates to
the grid cells slows down the algorithm.

We achieved better experimental results using visibility walks through the triangulation
as described by [DPT01]. Given a target point within the triangulation, the algorithm
works as follows:

• Choose any triangle as the current triangle

• While the current triangle does not contain the target point:

– For all three edges of the triangle:

∗ Extend the edge to an infinite line

∗ Test whether the target point lies in the half-space beyond that line

∗ If this is the case: Proceed with the neighbor triangle sharing that edge
with the current triangle

– If none of the neighbors was chosen, the current triangle contains the point.

See figure 3.9 for an illustration. In Delaunay triangulations, a visibility walk is guaran-
teed to terminate at the target triangle.

3.4.5. Implementation

As explained before, we implemented natural neighbor interpolation based on the Delau-
nay triangulation. Each triangle is represented as an object, with references to the three
sites at its corners and to its three neighbors. There is no global collection of triangles.
Instead, triangles are accessed via walking for the insertion of points. Iterating over all
triangles is not necessary for the interpolation algorithm itself; where doing so is desired
e.g. for debugging, the triangles are enumerated using a depth-first search of the graph
structure defined by the neighborship links.

To avoid burdening the later calculations with the special cases occuring at the border of
the Delaunay triangulation resp. Voronoi diagram, the triangulation is initialized with
two triangles which completely enclose all sites and points. Doing so is easily possible
because of our initial assumption that there is a known bound for x and z coordinates.

Subsequently, all sites with known elevation are permanently inserted into the triangula-
tion. At that point, the data structure is ready to be used for interpolation: Each point
with unknown elevation is temporarily inserted into the Delaunay triangulation. The

41



3. Terrain approximation

necessary flip operations are stored on a stack. After insertion, the Voronoi cell areas
of the point’s neighbors are calculated. The insertion is then undone by performing the
inverse operation of the stored flips in reverse order, and the neighbors’ Voronoi cell
areas are calculated again. The area differences are then used to determine the weight
of each neighbor and to ultimately calculate the interpolated elevation of the point.

3.5. Results

Both implemented algorithms produce visually plausible approximated terrains, see fig-
ure 3.10. The average difference between the results for a test area (SRTM tile N48E013)
is 0.76 m. Figure 3.11 shows how these differences are distributed.

A closer look reveals some differences, though: Natural neighbor interpolation sticks
exactly to the sites with known elevation; least squares approximation offers a very
smooth surface (figure 3.12). But despite the algorithms’ differences, the numerical
results suggest that these will not be particularly prominent in most places once various
concealing 3D models have been placed on top of the terrain. Therefore, performance is
an important motivation for choosing one algorithm over the other.

In our tests, the algorithm based on least squares approximation creates a terrain with
30 m sample distance for a square degree within 02:45 minutes. Our natural neighbor
interpolation needs 05:50 minutes for the same task.2

It should be noted that our prototype implementations are by no means perfect. If
the ability to handle arbitrarily distributed measurements was discarded or restricted,
exploiting the grid structure of SRTM data could yield significant performance gains; in
particular, doing so would make it faster to find the neighbors of each data point.

Other possible optimizations depend on the use case. If the algorithms were used to
refresh 3D output, e.g. on a server, in regular intervals, then SRTM data would not have
to be refreshed every time. Therefore, storing intermediary results of the algorithms –
the Voronoi diagram or the polynomials respectively – and loading them instead of the
unprocessed SRTM data could become an option. Finally, parallel execution would also
be possible for major parts of both algorithms.

2on an Intel Core 2 Duo CPU @ 2.66GHz with 6GB primary memory,
running the OpenJDK 64-Bit Server VM 1.7.0

42



3.5. Results

Figure 3.10.: Approximated terrain for an area around Passau, sampled in a 6 m grid.
Results shown for least squares approximation (top) and natural neighbor
interpolation (bottom).

43



3. Terrain approximation

-43

-41

-38

-37

-36

-35

-34

-33

-32

-31

-30

-29

-28

-27

-26

-25

-24

-23

-22

-21

-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

1

1

5

7

8

10

13

22

16

13

19

16

19

23

37

64

56

71

79

90

79

78

88

151

205

261

330

340

478

539

694

964

1128

1328

1633

2277

3395

6299

18690

140463

418041

136697

27595

4688

1032

561

287

155

100

66

65

58

68

58

55

32

36

15

Figure 3.11.: Distribution of elevation differences between least squares approximation
and natural neighbor interpolation, rounded to integers. Values in meters.
Positive values indicate that the terrain sample is higher with least squares
approximation.

44



3.5. Results

Figure 3.12.: Close look at terrain approximation results, sampled in a high-resolution
3 m grid. Results shown for least squares approximation (top) and natural
neighbor interpolation (bottom).

45





4. Integration of terrain and models

After converting the OpenStreetMap data to 3D models (chapter 2) and approximating
a terrain surface (chapter 3), we need to combine the results of the two processes into a
three-dimensional scene. During this final step, we will also improve elevations beyond
the original terrain elevation data by evaluating more information from OpenStreetMap.

4.1. Defining connectors

Our first goal is to make sure that the models are properly connected with each other
and with the terrain. To achieve this, we introduce connector nodes. Each model may
define one or several such connectors.

A connector initially has only two-dimensional coordinates, and enough information
to decide whether two connectors with identical two-dimensional coordinates defined
by different objects should be joined with each other: a flag distinguishing between
connectors on the ground and those above/below it, plus optionally a reference to an
OpenStreetMap node. Connectors which are joined will end up with the same three-
dimensional coordinates after the assignment of elevation values.

4.1.1. Connector examples

The following examples illustrate how different model types make use of connectors.

Node-based features

The most straightforward situation occurs with models derived from a single node, such
as trees or street lamps. In this case, a single connector is placed at the base of the
model. The connector is joined with the surface below – most commonly, this will be a
terrain surface.

Connection with terrain is also the only variant currently implemented for these models,
although support for placing them e.g. on top of bridges or roofs should be added in the
future to properly represent these rarer cases.

47



4. Integration of terrain and models

Linear features with width

Roads, railways and other linear features with a horizontal width define connectors at
the center and the left and right side of their end caps. They can thus be joined to other
parts of the road network. In figure 4.1, this is illustrated with a junction area. For
features on the ground, the connectors are also joined to the terrain.

Terrain surfaces

Terrain surfaces define a connector for each vertex in their outline polygons. Within the
outline, we insert connectors wherever another object defines a connector with a flag
indicating that it is on the ground. This ensures that these other objects are properly
connected to the terrain surface.

To obtain reasonably smooth surfaces, we insert a grid pattern of additional connectors
into the area.

The outline polygons and the connectors from the sources mentioned above are then
used as the input for the surface area’s triangulation. Therefore, each triangle’s vertices
will have corresponding connectors.

Tunnel entrances

Entrances into tunnels require special treatment because they create a hole in the terrain
surface. We achieve this by creating a ring of connectors around the entrance. All these
connectors are connected with the terrain, but only the lower row is connected to the
road.

Buildings

Buildings define a connector for each of their outline nodes. They are connected to the
terrain at the building’s ground level. However, buildings in sloped terrains may be
constructed in different styles: The ground may either be flattened to achieve a constant
elevation, or it may remain sloped so some levels are partially underground. As it is
usually not possible to distinguish these cases in OpenStreetMap, we have chosen to
default to the latter style for the current implementation.

One feature of buildings which allows to extract additional elevation data, however, are
entrances. They are not necessarily at ground level. Instead, we make that decision
depending on the highway ways connected to them.

48



4.1. Defining connectors

Figure 4.1.: Elevation connectors (blue) joining road sections with a road junction and
the surrounding terrain surface areas.

Figure 4.2.: Rectangular terrain surface patch. In addition to a regular grid of con-
nectors, two connectors created to accommodate trees on the ground are
visible.

Figure 4.3.: Elevation connectors around a tunnel entrance.

49



4. Integration of terrain and models

4.1.2. Direct elevation assignment

By directly assigning the approximated terrain elevation from chapter 3 to each con-
nector, we already obtain a result that looks decent from a distance. Basic goals of
connectors have been achieved – for example, node-based features such as trees will
always be connected to the ground, and roads are seamlessly inserted into the terrain
surface.

However, a closer look reveals several remaining limitations. To name a few: Bridges
and tunnels are still at ground level, steps and roads with an incline do not keep these
properties after elevation assignment, and roads and waterways at steep slopes have
unrealistic inclines orthogonal to their direction.

Figure 4.4.: Rendering based on direct assignment of approximated terrain elevation
values, highlighting several of the flaws pointed out above. As expected,
bridges follow the ground slope and are thus submerged in water.

50



4.2. Defining constraints

4.2. Defining constraints

To further improve the resulting scene and address the observed limitations of direct
elevation assignment, we introduce another concept, constraints. These are relationships
between connectors’ elevations, such as a minimum distance. A lot of information from
OpenStreetMap can be expressed using such relationships. This section suggests a set
of basic constraints and explains their potential uses.

Same elevation

It often makes sense to require that a group of connectors shares the same elevation.

With our implementation, this is used for the triples of connectors at each node of a road,
railway or other linear feature with a width. While this is still just an approximation
to reality, it is preferable to roads whose shape is entirely determined by the underlying
terrain surface.

Another use case are outlines of water bodies. We also use it preliminarily for the outlines
of waterways that are mapped as areas rather than just linear ways, even though this
fails to take their natural incline into account.

Exact elevation difference

In some cases, we want to maintain an exact elevation difference between two connectors.
For example, this is the case with tunnels if the height of the tunnel is known. Likewise,
we can enforce an exact elevation difference between two entrances at different building
levels.

Minimum/maximum elevation difference

Below bridges and above tunnels, we need to enforce a minimum distance to ground
level features and the terrain surface itself. It is sensible to assume a default minimum
distance, but we could improve it e.g. when the way below a bridge has a maxheight

tag. Constraints of this type are also helpful to model cliffs and retaining walls.

Sometimes there will not be a single other connector to serve as the counterpart in a
constraint. In these situations, we can require a distance between a connector and the
line segment between two other connectors instead. This is applied e.g. to keep trees at
a distance from a road through the tunnel below.

As a special case, minimum or maximum elevation differences can be used to model
inclines. Unlike the other examples, the target value for the elevation difference needs

51



4. Integration of terrain and models

to take the distance between two connectors into account when modeling an incline.
Incline constraints are straightforward for ways with explicit incline tags, but we are
also using a default maximum incline of 35% to prevent particularly extreme elevation
differences. Waterways are prevented from flowing uphill.

4.3. Enforcing constraints

4.3.1. Linear programs

To enforce our constraints, we use the linear program model, which is more commonly
used in fields such as microeconomics or operations research. This overview of the
concept is based on [MS08].

Generally speaking, a linear program (LP) is an optimization problem, formulated as
a number of linear constraints and a linear objective function. More precisely, an LP
consists of

• n variables x1, . . . , xn ∈ R, combined as a vector x = (x1, . . . , xn)

• m constraints ai · x ./i bi, where i ∈ 1..m, ai ∈ Rn, bi ∈ R and ./i∈ {≤,≥,=}

• the objective function f : Rn → R with f(x) = c1 · x1 + · · ·+ cn · xn

When solving a linear program, the goal is to find an x that maximizes the objective
function as much as possible without violating the constraints.

Many variations are equivalent to the basic definition above. For example, minimizing
instead of maximizing the objective function f is possible by multiplying each coefficient
ci by −1. That definition itself is a variant of a more restricted form, which allows only
non-negative values for xi.

LPs can be solved in polynomial time. Nevertheless, many solvers instead implement
algorithms with up to exponential worst case execution time, but good real-world per-
formance for typically encountered problems.

We will skip discussion and implementation of algorithms for solving linear programs
and rely on existing implementations instead. After all, one of the primary advantages
of expressing a problem using LP is the availability of a wide range of solver libraries.
In our software, we use lp solve,1 accessed through the Java ILP2 wrapper.

1http://lpsolve.sourceforge.net/5.5/
2http://javailp.sourceforge.net/

52

http://lpsolve.sourceforge.net/5.5/
http://javailp.sourceforge.net/


4.3. Enforcing constraints

4.3.2. Modeling the problem

To be able to apply an LP solver to our problem, we need to describe it using variables
and constraints of a linear program, and define an objective function.

Variables

We create a variable for the elevation of each connector as defined in section 4.1. For
multiple joined connectors, though, we use only one variable – their elevation is supposed
to be identical.

Constraints

The constraints described in section 4.2 can be translated into LP constraints. As most
of the coefficients ci are 0 for each of the constraints, it serves readability to avoid vector
notation here.

It should be noted that incorrect OpenStreetMap data or invalid assumptions on our
part can lead to contradictory constraints (an obvious example for the former would be a
way with non-zero incline that contains a node more than once), and thus an unsolvable
LP. If this occurs, we fall back to direct elevation assignment as described in section
4.1.2.

Same elevation To make sure that two connectors associated with the variables x1
and x2 are at the same height, we simply require:

1 · x1 + (−1) · x2 = 0

Based on the equation as given here, we could even merge the variables entirely. However,
due to the changes we will introduce later to define our objective function, this is not
generally possible for connectors at different positions.

Exact elevation difference Likewise, to require an elevation difference of exactly b
between two connectors associated with the variables x1 and x2 (with x1 being the
upper connector), we require:

1 · x1 + (−1) · x2 = b

Minimum/maximum elevation difference For a minimum difference (maximum fol-
lows easily), we alter the operation in the previous constraint and require:

1 · x1 + (−1) · x2 ≥ b

53



4. Integration of terrain and models

In some cases, the distance is relative to a line segment between two connectors associated
with variables x2 and x3, rather than the second connector from before. We calculate
the horizontal distances d1,2 and d1,3 between the connector associated with x1 and the
two ends of the line segment, and require

1 · x1 +
−d1,3

d1,2 + d1,3
· x2 +

−d1,2
d1,2 + d1,3

· x3 ≥ b

Objective function

The objective function does not directly follow from our previous decisions and calls
for some creativity and experimentation. For our implementation, we chose a relatively
simple objective: We try to minimize the sum of differences from the previously approx-
imated terrain elevation – i.e. we want to stay as close to the terrain obtained in chapter
3 as the constraints allow.

It is not straightforward to construct this objective function because absolute values
involving variables cannot appear in a linear program. However, it is possible to work
around that restriction: If we want |xi − elei| to appear in the objective function, we
create two non-negative variables xi,pos and xi,neg. The idea is to substitute xi with
elei + xi,pos − xi,neg. For xi ≥ elei, we expect xi,pos = xi − elei and xi,neg = 0. For
xi < elei, we want xi,neg = elei − xi and xi,pos = 0.

In the objective function, our substitution turns |xi− elei| into |xi,pos− xi,neg|. Because
at most one of our new variables can be 0 at the same time, we can instead write
xi,pos + xi,neg. Having this term appear in the objective function also makes sure that
the solver will not assign a non-zero value to more than one of these variables and violate
our definition – such a result would not be minimal.

The constraints also have to be modified. We apply our substitution to every constraint

· · ·+ c · xi ./i b

and obtain:
· · ·+ c · (elei + xi,pos − xi,neg) ./i b− c · elei
· · ·+ c · xi,pos + (−c) · xi,neg ./i b− c · elei

After calculating the expression on the right side, this is again a valid LP constraint.

54



4.3. Enforcing constraints

4.3.3. Results

The LP described in the previous sections succeeds at some tasks, such as simple tunnels
(figure 4.6) and cliffs (figure 4.7). It also tames the triangulated surface of rivers and
roads, and raises bridges above the water level (figure 4.5).

Various minor visible glitches are caused by existing OSM2World code and can be fixed
by improving the underlying codebase: Working with raw OpenStreetMap data rather
than the final models sometimes causes the intersection detection code to miss areas
overlapping roads or other ways with a width. Triangulation artifacts also fall into that
category.

Figure 4.5.: Data from the OpenStreetMap database with constraints enforced using our
LP, showing flat water surfaces, bridges and other details.

55



4. Integration of terrain and models

Figure 4.6.: An artificial tunnel test case, with constraints being used to keep the tunnel
entrances open and stop the trees from sinking into the tunnel.

Figure 4.7.: A small cliff raised from the ground by minimum vertical distance
constraints.

56



4.3. Enforcing constraints

Figure 4.8.: None of the constraints prevent land from being at a lower elevation than a
nearby water surface.

Figure 4.9.: Bridges carrying roads or railways often have unrealistic shapes.

57



4. Integration of terrain and models

However, other flaws are caused by the LP itself. For example, we would want water
surfaces to be below the surrounding terrain (figure 4.8), but this is not being enforced
by our basic set of constraints. Furthermore, bridges and tunnels often have sharp peaks
at their highest connector (figure 4.9). The root cause of this is the low number of nodes
in bridges – bridge ways are usually straight in 2D, so OpenStreetMap contributors will
not insert additional nodes for smoothness as would be common practice with curved
ways. Artificially increasing the node density could solve this.

Perhaps the most important drawback of our LP, though, is its simplistic objective func-
tion. While it is generally desirable to stay somewhat close to the approximated terrain,
it neglects other relevant factors. In particular, avoiding abrupt incline transitions and
steep inclines (beyond the hard constraints which can only prevent the most cases) would
be desirable qualities.

Finally, a general issue with using an LP at all is its sensitivity to contradicting con-
straints. Due to the crowdsourced nature of OpenStreetMap, this may prove to be a
major flaw of the approach. Falling back to an LP with relaxed constraints or the ap-
proximated terrain are both problematic strategies because they affect the entire scene.
A robust algorithm where data errors have only local effects would be preferable.

Figure 4.10.: Bridges at a motorway junction, exposing the shortcomings of our objective
function. There is no incentive to smooth the bridge surface, and ground
level roads are kept close to the approximated terrain at all costs.

58



5. Conclusion

As a first step (chapter 2), we were able to produce 3D models of various real-world
features from OpenStreetMap data. We expect that the OpenStreetMap community
continues to tackle unsolved problems in the data model and expand the coverage of
existing tagging. If that happens, the project has great potential as a data source for
3D rendering and will easily meet and even exceed the needs of a wide range of popular
application categories.

Our experimentation with terrain approximation in chapter 3 confirm that the vast
toolbox of established algorithms available to developers is well equipped to deal with
the task of creating good-looking terrains. Assuming some performance improvements
obligatory for production use, even relatively straightforward approaches such as our
elevation connector framework allow the use of OpenStreetMap data together with ter-
rain approximated from external measurements. Thus, we expect that the project’s
community will be able to make good use of the ideas presented in this thesis.

As it turns out, the most challenging task is that of working smaller-scale detail based
on OpenStreetMap vector data into the terrain’s elevation. Our overview of constraints
in section 4.2 shows and categorizes much of the information that could be obtained
from the open database, and the subsequent experiments produce encouraging results
for certain isolated examples which underline the desirability of leveraging that infor-
mation for 3D rendering. However, we cannot recommend our solution based on linear
programming yet, due to the problems described in that section. Consistently obtaining
results with reasonable performance and quality remains an open challenge.

59





A. Installing and using the prototype

For this thesis, we developed a prototype implementation based on OSM2World. This
appendix describes the necessary steps to install and run the prototype.

A.1. System requirements

Running the prototype requires a Java Runtime Environment in version 1.6 or higher.
We use OpenGL through JOGL,1 so the system should have graphics hardware and
drivers capable of running modern OpenGL programs.

It is expected that the JVM can allocate 2 GB of memory for the prototype. Otherwise,
it is necessary to modify the startup script or pass appropriate parameters.

If you want to experiment with the linear program, make sure to install the native
dependencies for lp solve.2 If the LP option is not enabled, the rest of the prototype
will run fine without lp solve, though.

Figure A.1.: Program window of the prototype’s viewer application.

1https://jogamp.org/jogl/
2http://lpsolve.sourceforge.net/5.5/Java/README.html

61

https://jogamp.org/jogl/
http://lpsolve.sourceforge.net/5.5/Java/README.html


A. Installing and using the prototype

A.2. Installation and program start

An archive containing the software is available on the CD-R bundled with the printed
version, or from the author’s website.3 To install the software, it is sufficient to unpack
the archive.

Start the prototype by executing the startup script appropriate for the operating system
(osm2world.sh on Linux and Mac, osm2world-windows-*.bat on Windows).

A.3. Loading OpenStreetMap data

OpenStreetMap data must be stored as a file in .osm,4 .osm.gz, .osm.bz2, or .osm.pbf5

format to be used as input for the prototype. Some example files are included, but you
can download more data from the OpenStreetMap database using the project’s website
or editor software such as JOSM.6 For the prototype to function properly, .osm files
must contain one valid <bounds> element as documented in the format’s specification
(many sources for OpenStreetMap data will create this automatically).

To open a file, use the File menu, or drag & drop the file into the program window.
After changing configuration options, you will usually have to reload the file.

The prototype needs access to SRTM data for the geographical area covered by the
OpenStreetMap input file. These need to be placed in the srtm subdirectory of the
program’s working directory. Again, a number of example files are included, and more
can be obtained from NASA’s SRTM download page.7

A.4. Navigation

When the prototype has finished the conversion, an interactive 3D rendering of the
output will appear. You can navigate through the scene using your mouse or keyboard.
Note that it is possible to reset the camera to its initial position from the Camera menu.

• Left mouse button: drag the mouse to move the camera position

• Right mouse button: drag the mouse to rotate the camera

• Mouse wheel: move the camera closer to the scene or away from it

3http://tobias-knerr.de/publications/thesis/
4http://wiki.openstreetmap.org/wiki/OSM_XML
5http://wiki.openstreetmap.org/wiki/PBF_Format
6https://josm.openstreetmap.de/
7http://dds.cr.usgs.gov/srtm/

62

http://tobias-knerr.de/publications/thesis/
http://wiki.openstreetmap.org/wiki/OSM_XML
http://wiki.openstreetmap.org/wiki/PBF_Format
https://josm.openstreetmap.de/
http://dds.cr.usgs.gov/srtm/


A.5. Configuration options

• W/A/S/D: move the camera position

• Arrow keys: rotate the camera

• Page up/down: move the camera up/down

A.5. Configuration options

The following settings are available in the Options menu:

• TerrainInterpolator: offers a choice between the terrain approximation algo-
rithms presented in detail in chapter 3. The option Zero will generate completely
flat terrain.

• EleConstraintEnforcer: enables or disables the linear program introduced in
section 4.3. With the None option, direct elevation assignment as described in
section 4.1.2 is used, disregarding constraints.

A lot more options are available from the command line and configuration files. These
are pre-existing features from the OSM2World codebase, though, and not directly related
to this thesis. Refer to OSM2World’s documentation8 for them.

A.6. Views

The View menu offers a variety of different ways to look at the program’s results. The
following views illustrate concepts from this thesis:

• EleConnectorDebugView: shows the elevation connectors introduced in 4.1

• EleConstraintDebugView: shows some of the constraints introduced in 4.2

• *InterpolatorDebugView: these four views show empty shaded terrain created
by one of the terrain approximation algorithms

8http://wiki.openstreetmap.org/wiki/OSM2World

63

http://wiki.openstreetmap.org/wiki/OSM2World




B. Bibliography

[AK00] F. Aurenhammer and R. Klein. Voronoi diagrams. In J. Sack and G. Urrutia,
editors, Handbook of Computational Geometry, Chapter V, pages 201–290.
Elsevier Science Publishing, 2000. [SFB Report F003-092, TU Graz, Austria,
1996].

[BN08] Eric Bruneton and Fabrice Neyret. Real-time rendering and editing of vector-
based terrains, 2008.

[dB00] M. de Berg. Computational geometry: algorithms and applications. Springer,
3rd edition, 2000.

[DPT01] Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a triangu-
lation. Technical Report RR-4120, INRIA, 2001.

[Far02] G.E. Farin. Curves and Surfaces for CAGD: A Practical Guide. The Morgan
Kaufmann Series in Computer Graphics. Elsevier Science, 2002.

[LG04] Hugo Ledoux and Christopher Gold. An efficient natural neighbour interpo-
lation algorithm for geoscientific modelling. In Proc. 11th Int. Symp. Spatial
Data Handling, pages 23–25, 2004.

[Lon05] P. Longley. Geographic Information Systems and Science. Wiley, 2nd edition,
2005.

[MS08] K. Mehlhorn and P. Sanders. Algorithms and Data Structures: The Basic
Toolbox. Springer, 2008.

[NZ12] Pascal Neis and Alexander Zipf. Analyzing the contributor activity of a
volunteered geographic information project — the case of OpenStreetMap.
ISPRS International Journal of Geo-Information, 1(2):146–165, 2012.

[NZZ11] Pascal Neis, Dennis Zielstra, and Alexander Zipf. The street network evolu-
tion of crowdsourced maps: OpenStreetMap in Germany 2007–2011. Future
Internet, 4(1):1–21, 2011.

[OSN+09] Martin Over, Arne Schilling, Steffen Neubauer, Sandra Lanig, and Alexander
Zipf. Virtuelle 3D Stadt- und Landschaftsmodelle auf Basis freier Geodaten.
2009.

65



B. Bibliography

[RNJ07] H. I. Reuter, A. Nelson, and A. Jarvis. An evaluation of void-filling inter-
polation methods for SRTM data. Int. J. Geogr. Inf. Sci., 21(9):983–1008,
January 2007.

[Sib81] Robin Sibson. A brief description of natural neighbour interpolation. Inter-
preting multivariate data, 1981.

[SLNZ09] Arne Schilling, Sandra Lanig, Pascal Neis, and Alexander Zipf. Integrat-
ing terrain surface and street network for 3D routing. 3D Geo-Information
Sciences, pages 109–126, 2009.

[UZ12] Matthias Uden and Alexander Zipf. OpenBuildingModels – towards a plat-
form for crowdsourcing virtual 3D cities. 7th 3D GeoInfo Conference. Quebec
City, QC, Canada, 2012.

[Vai89] Pravin M. Vaidya. An O(n log n) algorithm for the all-nearest-neighbors
problem. Discrete & Computational Geometry, 4(1):101–115, 1989.

66



Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich diese Masterarbeit selbstständig angefertigt und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt habe. Alle wörtlich oder
sinngemäß übernommenen Ausführungen wurden als solche gekennzeichnet. Weiterhin
erkläre ich, dass ich diese Arbeit in gleicher oder ähnlicher Form nicht bereits einer
anderen Prüfungsbehörde vorgelegt habe.

Passau, den 2. Mai 2013

(Tobias Knerr)


	Introduction
	Motivation
	Previous work
	Three-dimensional rendering of features
	Three-dimensional terrain rendering
	Integration of terrain and three-dimensional feature models

	Data sources
	OpenStreetMap
	SRTM


	Preparation of OpenStreetMap data
	OpenStreetMap data model
	Primitives
	Tags
	Areas

	Relevant tags and relations
	Universal properties
	Buildings
	Transport networks
	Water
	Miscellaneous objects

	Generation of meshes for 3D world objects
	Ground meshes
	Coastlines


	Terrain approximation
	Basic definitions
	Overview of approximation techniques
	Approximation using least squares
	Least squares
	Implementation
	Overall complexity

	Natural neighbor interpolation
	Voronoi diagram
	Natural neighbors
	Construction of the Voronoi diagram
	Visibility walks
	Implementation

	Results

	Integration of terrain and models
	Defining connectors
	Connector examples
	Direct elevation assignment

	Defining constraints
	Enforcing constraints
	Linear programs
	Modeling the problem
	Results


	Conclusion
	Installing and using the prototype
	System requirements
	Installation and program start
	Loading OpenStreetMap data
	Navigation
	Configuration options
	Views

	Bibliography

